REDUCTIVE DECOMPOSITION OF NITRIC OXIDE BY BIS(SALICYL-ALDEHYDE)ETHYLENEDIIMINO MANGANESE(II) AND FORMATION OF AN OXYGENATED MANGANESE COMPLEX

Motonori TAMAKI, Isao MASUDA, and Koichiro SHINRA
Department of Applied Chemistry, Faculty of Engineering, Osaka
University, Yamada-Kami, Suita

By the reaction of $\mathrm{Mn^{II}}(\mathrm{Salen})$ (Salen: bis(salicylaldehyde)-ethylenediiminato dianion) with NO in DMSO, NO is reductively decomposed to give $\mathrm{N_2O}$ and $\mathrm{N_2}$, and a new oxygenated manganese complex (Mn=O(Salen)) $_2\mathrm{O_2}$ is formed. The complex shows IR absorption bands at 623 and 640 cm⁻¹ attributed to $\nu_{\mathrm{Mn-O}}$, and at 884 cm⁻¹ attributed to $\nu_{\mathrm{Mn-O}}$, indicating both oxo- and μ -peroxo-bonding in the complex.

Only few examples of a metal-catalyzed decomposition reaction of NO are known up to the present. Certain transition-metal carbonyls were found to convert NO into NO₂ and N₂O. Recently, Rossi and Sacco reported that $\text{Co(PPh}_3)_3(\text{NO})$ reacts with NO to give N₂O, N₂ and a nitrosylnitro-complex. Earnshaw et al noted that when Mn²⁺ or Fe²⁺ was reacted with SalenH₂ in a NO atmosphere, $\text{(Mn}^{\text{III}}(\text{Salen})$)⁺ resp. $\text{(Fe}^{\text{III}}(\text{Salen})$)₂O were obtained, instead of the expected nitrosyl complexes. Their results seem to be implying a reductive decomposition of NO.

Their results seem to be implying a reductive decomposition of NO. In the present work we found out that $\mathrm{Mn}^{\mathrm{II}}(\mathrm{Salen})$ decomposes NO to N₂O and N₂, and forms a new oxygenated manganese complex, which is tentatively formulated as $[\mathrm{Mn=O}(\mathrm{Salen})]_{2}\mathrm{O}_{2}$.

Reaction with NO:

A reaction flask containing 50 ml of DMSO, deoxygenated

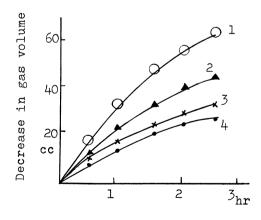


Fig. 1. Changes in gas volume.

Mn^{II}(Salen): 1/300M; curve 1,
1/667M; curve 2, 1/1000M;
curve 3, 1/2000M; curve 4,
in DMSO solutions

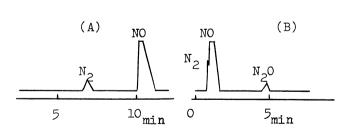


Fig. 2. Gas chromatograms.

Column; 4mm i.d. × 3m long, Column temp;

60°C

Column packing; (A) Molecular sieves 5A

(B) Silicagel

Carrier gas; (A) He, 120ml/min (B) H₂, 60ml/min

by applying high vaccum, and equipped with a gas burette filled with liquid paraffin was filled with NO. Then, after the pressure was ajusted to 1 atm. at 25°C, Mn^{II}(Salen) was added to the solution. The changes in the gas volume are shown in Fig. 1. The result indicates that Mn^{II}(Salen) decreases the volume of the gaseous compounds by a molar ratio of 1: 2.

Gas chromatographic analyses of the gaseous products carried out under the conditions noted in Fig. 2, indicate that N_2 0 and N_2 were formed during the reaction.

[Mn=O(Salen)] $_2$ O₂: The reddish-brown compound precipitated from the reaction mixture was separated, and recrystallized from dichloromethane. Found: Mn,15.61; C,54.34; H,4.18; N,7.55%. Calcd for MnC $_{16}$ H $_{14}$ N $_{20}$ O $_{4}$: Mn, 15.55; C,54.40; H,4.00; N,7.93%. The compound is paramagnetic, 2.11 B.M., and the elementary analyses agree with a formula Mn(Salen)O $_{2}$. The IR spectrum of the complex possesses almost the same pattern as that of Mn^{II}(Salen), with exception of the new bands observed at 623, 640 and 884 cm $^{-1}$ (Fig. 3). The strong bands at 623 and 640 cm $^{-1}$ may be ascribed to $V_{\rm Mn=O}$, and the band at 884 cm $^{-1}$ to $V_{\rm Mn=O}$.

In the thermogravimetric analysis curve, the complex shows a weight loss at $190 - 220^{\circ}$ C which corresponds to liberation of 0.5 mole 0_2 per manganese atom.

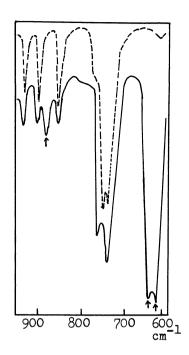


Fig. 3. IR spectra of [Mn=O(Salen)]₂O₂ (——) and Mn^{II}(Salen) (----).

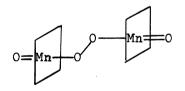


Fig. 4.

These data seem to indicate that the compound includes both oxo- and μ -peroxobonding. The dimeric structure shown in Fig. 4 is tentatively proposed.

- 1) R. D. Feltham, Inorg. Chem., <u>3</u>, 121 (1964); W. B. Hughes, Chem. Comm., 1126 (1969); C. E. Strouse and B. I. Swason, ibid., 55 (1971).
- 2) M. Rossi and A. Sacco, ibid., 694 (1971).
- 3) A. Earnshaw, E. A. King and L. F. Larkworthy, J. Chem. Soc., A, 1969, 2459; ibid., 1968, 1048.
- 4) T. Matsushita, T. Yarino, I. Masuda and K. Shinra, submitted for publication.

(Received December 10, 1971)